那些錄音筆錄不到的事:乙方PM的專案溝通課

[大衛選讀] 昨天去上了一堂,扎扎實實的 PM 專案溝通課。這是悠識學院的 Richard 特別開給設計顧問同業的閉門交流課。

因為關起門來,大夥聊起甲乙雙方的愛恨糾葛,總是特別真實深刻。由於收穫太多了,我特別把互動問答當中,特別有共鳴的觀念整理出來,結合自己的經驗反思,寫成一篇專文。

對於這堂課有興趣的朋友,歡迎直接聯繫 Richard


客戶總是變來變去,有什麼不變的對應原則?

首先,你的個人動機很重要。

如果你做這個案子沒有想清楚自己的動機,那會很容易變得沒有動力跟韌性,也很難調適各種困難與變化。專案開始前,得要先找到個人的動機,那將會是在變動中,評估自己該如何做的不變核心。

這就要順便分享我自己帶專案,常會跟團隊討論的四個目標,也就是專案、客戶、團隊,以及個人目標。

專案目標最簡單,要達成的目標跟交付物,都寫在RFP跟開案簡報裡了。

客戶目標則要主動去考慮,他們除了順順做完專案之外,希望能順便建立結構、訓練培力、還是升官前的考驗?知道了就能幫忙,會去考慮客戶心裡要什麼,也才有機會經營夥伴關係。

團隊目標則是,我們自己的團隊想要完成些什麼。也許是想要挑戰新的領域,也或許是面對舊專案想要嘗試新作法?設好團隊目標,大家做起專案來會比較有共識,什麼要多做一點,什麼得要放掉。

個人目標是常常被忽略,但是很重要的部份。我通常會在專案啟動前,一對一跟團隊成員討論個人的目標。無論是要挑戰資深崗位、轉換不同角色,還是累積特定的作品經歷都好。討論確定了,就讓團隊裡的每個人都知道彼此的個人目標,這就有機會讓大家互相幫忙。

總之,個人的動機很重要。有值得追求的目標放心裡,才不會浪費青春,白白做一個案子。

溝通不良,無法改善,甚至對方失去了溝通意願?

專案上的溝通,不是為了當好人、討好客戶,或是維持私人關係。

溝通只有一個目的,就是設法達成既定的專案目標。

所以遇到溝通的問題時,得要回到根本去檢視專案的目的 (Goal, 為什麼要起這案子) 跟目標 (Objective, 要達成什麼),然後盤點人事物的現況,看看到底中間發生了什麼問題。

回到個人經驗,通常在專案初期的內部訪談過後,我會帶團隊在客戶公司樓下大廳快速retro, 交流剛剛聽到了什麼「錄音筆錄不到的事情」。

有些事情不好說、有困難,在面對面的場合裡,就會形成錄音筆錄不到的無聲互動。這裡頭藏的可能就是關鍵的 hidden agenda,若能早點發現應變,就可以省掉中後期的大量溝通成本。

此外,溝通的原則技巧,除了順藤摸瓜 + 對等溝通外,有一個態度上的建議,那就是:「我是來幫你的,你有什麼問題,都可以跟我說。」我的親身經驗是,即使碰到合作意願低落的窗口,只要把這來幫忙的態度擺好,多溝通幾次,總是會有機會切進去的。

客戶只簡略介紹需求,就要求估價?

PM 常常碰到這狀況,那該怎麼辦呢?簡單講,硬著頭皮報價是很不負責任的作法。要不害死自己,要不報價含風險溢價就會高到沒天理,開頭就留下一個壞印象。

預算 vs. 估價 vs. 報價,這是三個不同的字眼。

閱讀全文 那些錄音筆錄不到的事:乙方PM的專案溝通課

當我們讓人工智慧代筆時,究竟失去了什麼?

[大衛選讀] 平常在開會或做設計討論時,我多半會打開筆記本,霹靂啪啦開始寫東西。有些設計師會問我,腦袋想就好,為什麼一定要打字?

這大概是研究所以後養成的習慣吧,一開始是為了把議題記錄下來,避免遺漏了而寫。後來慢慢演變成,只有三成記錄眼前脈絡,更多的是記錄腦袋裡的想法。

所以我的筆記除了聽到的重點之外,大部分會是我腦中的提問、可能的假設,以及後續的規劃與建議。有邊想邊記錄下來,思緒會變得很清晰,而且很快就能進入反思與決策。

生成式 AI 一鍵就可以錄音並且總結會議記錄,一開始用很驚艷,可是用著用著,我發現思考變慢變薄了,有一種腦霧感。

仔細想想,我的體感經驗完全呼應到 Paul Graham 所說的:寫作本身就是思考 (writing is thinking)。寫作本質上是一個擴充腦力、精鍊邏輯思維的過程,而不只是生成文字而已。

很快地,未來大量的寫作工作一定會被外包給 AI。但是思考跟語文能力的鍛鍊,想要讓腦袋變聰明,就更需要靠自己有意識地健身勞動了。

本文選讀彙整了多篇文章,內容整理如下,原文連結則放在留言中。


寫作就是思考,難以簡化,而且頗有壓力

Paul Graham 前一陣子寫了篇文章,名為《Writes and Write-Nots, 會寫作,與不寫作的人》。他認為,寫作本身就是思考 (writing is thinking)。寫作早已內嵌在許多工作中,而且工作的影響力越大,往往需要越多的寫作。

寫作本質上是件很困難的事,而且難以簡化。要寫得好,你必須思考清晰 (think clearly),而清晰地思考是件難事。

腦袋沒想清楚,寫得狗屁不通已經夠糟;如果還沒有深入思考,就去抄襲別人的文字,那就更慘了。字裡行間會顯露出瑣碎、平凡,而且缺乏洞見與思辨能力。

寫作,確實是件頗有壓力的事情。

一旦可以把寫作外包給 AI,人類將往兩個極端走

然而 AI 打開了一個新的可能性,生成式人工智慧一出現,幾乎所有寫作的壓力都已散去。無論是在學校還是工作中,幾乎都可以讓 AI 幫你代筆。

可清楚預見的,把寫作外包給 AI 的趨勢會加速發展。過往那個嘔心瀝血構思文句的繁重工作,一旦可以外包出去,那種一鍵生成快速便利的感覺,真是會令人感到興奮。

舉凡公司郵件、法律文件、伴娘致辭、訃文等,可預見的是,人工智能寫作將無處不在,要生成多少文字就有多少文字,甚至跟真人寫的沒什麼差別。

結果是,這個世界將分成兩群人:寫作者 & 非寫作者。喜歡寫作的人會變得更為優秀、更懂得思考;而其他人則會變得更加不擅長這些事情。

人工智能魔法的便利性,是有其代價的 (the convenience of AI magic comes at a cost)

AI 生成取代寫作,不僅是一種自動化的進程而已。這並不像是從算盤過渡到電子計算機那樣,只是計算上的勞力替代。讓人工智能為我們寫作的後果,實際上更加危險。

閱讀全文 當我們讓人工智慧代筆時,究竟失去了什麼?

我們已經準備好迎接又快、又劇烈的 AGI 變革嗎?

[大衛選讀] 近期紐約時報旗下的 Hard Fork 做了一則專訪,訪問 OpenAI 前任資深顧問 Miles Brundage,談 AGI 發展趨勢,以及對於大眾的影響。

過去六年深入參與 AGI Readiness 的研究工作,他認為現在是一個很瘋狂的狀況。一方面 AI 技術發展正在向前不斷加速,但是另一方面政府跟社會似乎都還沒有做好應變的準備,大眾的認知也跟先進實驗室的發展現況有相當落差。

對他來說,趨勢很明顯。不需要幾十年,而是在未來幾年內,人工智慧將能夠全面勝任人類在電腦上能做的各種工作。提早退休的時代將會比我們預期地更早來臨,隨著經濟快速發展,若能搭配好的租稅與社會福利制度,大多數人無需工作也能過活。

變革之大,教育與工作的意義,將需要重新被探索跟定義。在那之前,為了更好的在後人工智慧時代下生活,Miles Brundage 建議,人們應該趁現在,趕快積極儲蓄,並且充分了解人工智慧的能與不能。

本文選讀彙整了多篇文章。內容整理如下,原文連結則放在留言中。


我們已經準備好迎接又快、又劇烈的 AGI 變革嗎?

Miles Brundage 曾任牛津大學人類未來研究所的研究員,之後加入 OpenAI,參與通用人工智慧準備 (AGI Readiness) 的研究工作,以確保 OpenAI 在建構更強大的人工智慧系統時,能夠安全地釋出這些系統,讓社會享受到人工智慧帶來的益處,同時減輕風險。

他在 OpenAI 工作六年後,宣布離開的消息引起了很多關注。他一直非常積極地呼籲大家關注這些系統的風險。但他在離職的過程中表示,他不認為 OpenAI 或任何其他先進人工智慧實驗室已經為人工智慧的到來做好了準備,而整個社會也還沒做好準備。

如果去仔細閱讀各個先進人工智慧實驗室發表的東西,會發現他們普遍承認還沒有完全掌控一切。所以這是一個很瘋狂的情況:一方面是技術進步非常快,另一方面是了解最多的人卻說我們還沒做好準備。

電腦在未來幾年內,或將全面勝任人類在電腦上能做的各種工作

在未來幾年內,很可能會出現人工智慧系統,在電腦上的工作能力完全超越並可取代人類,無論你是否要稱它為通用人工智慧 (AGI)。

趨勢很明顯,這些系統將能夠操作滑鼠和鍵盤,甚至可以在視訊聊天中看起來像真人。人們應該儘早思考這意味著什麼,政府也應該思考這對稅收、教育投資等意味著什麼。

在一個人工智慧可以勝任大部分工作的環境下,教育的意義是什麼?

並不是說所有的工作都會消失,但人工智慧的發展必然會帶來巨大的衝擊,人們需要提前思考這對於教育的深遠影響。

教育的目的是培養人們成為一個努力工作的好公民,還是讓他們能更加了解自身所在的世界?如果教育不是跟過去一樣,主要是為了就業做準備,那麼未來發展時,就會更需要去思考教育的真正意義是什麼。這肯定會變得很不一樣。

人工智慧的發展是真實深刻的,但是大眾的認知還沒有跟上

總會有一些人認為這都是科幻小說,他們不相信人工智慧正在接近人類水平的智慧,他們在生活中看不到 ChatGPT 或其他工具的用處,他們認為這基本上是科技巨頭的營銷炒作。

身為科技與社會跨領域研究的專家,Miles Brundage 觀察到科技業界人士與大眾之間的認知差距。這斷差既有趣,又值得深入探討並且試著弭平。

閱讀全文 我們已經準備好迎接又快、又劇烈的 AGI 變革嗎?

預測未來:從蒸汽機到人工智能,我們學到了什麼?

[大衛選讀] 預測未來有多難?最近讀了一些科技發明對於人類歷史的影響,再從當時人們的認知與預測,對照後續的真實發展,會發現要預測未來真的很困難。

從蒸汽機發明,到鐵路建設,以及設備電氣化等技術發展來看,人們對於新技術的直覺想像總是貧乏的,也往往會在長期範圍內,低估了新技術所帶來的深遠影響。

人工智慧很明顯會帶動第四次工業革命,要怎樣重新思考我們的工作?是要謀定而後動,還是打帶跑見機行事?

本文選讀彙整了多篇文章。內容整理如下,原文連結則放在留言中。


預測未來:從蒸汽機到人工智能,我們學到了什麼?

未來是一片未經探索的領域,而我們對於未來會如何的直覺往往是錯誤的。

眾所周知,哥倫布曾以為他正在開闢一條通往印度的新貿易路線,結果卻意外發現了美洲大陸。同樣地,對於未來工作的預測,通常跟我們真正到達未來時所看到的實際情況,往往相距甚遠。

以著名經濟學家凱恩斯在 1930 年代的估計為例,他預測在幾代人之內,每週將只需要工作 15 小時。他認為技術的進步將提高生產力,讓人類能夠用更少的工作時間享受同等的生活水準。雖然隨著歷史演進,工時確實有若干減少,但是自 1940 年代以來,典型的工作週仍停留在平均每天 8 小時,每週 5 天的水平。

為什麼我們的預測經常是錯的?

首先,人類是非理性和情緒化的,這使我們難以預測未來會怎樣發展。

在科學研究的基礎上,我們對大自然的理解,比對人性的理解要好得多。由於大自然的規則是由物理世界所定義的,是邏輯的、能被充分理解的,而且穩定不變。這使得科學家能夠在高度確定的狀況下,去理解複雜的物理過程,例如氣候變化。

但人性決定了人們將如何在社會經濟跟政治上,去做出反應。人性本質上是非理性和情緒化的,這使我們難以預測。這就是為什麼,氣候變化和許多其他事件對未來的影響,實務上難以準確預測的原因。

此外,我們在預測上的真正問題,並不在於技術貧乏或不精確,也不在於我們在短期內高估了新想法和技術的潛力;而是往往在長期範圍內,低估了它們的影響 (underestimating their impact in the long term)。

預測靠的是模型,也就是一種框定現況以及後續動態的方式 (model, a way of framing the present and its dynamics)。但是我們使用的模型,難以考慮到人類的慾望和創造力。未來是由無數人類所共同決策與塑造的,而正是這些人類的判斷,決定了我們將身處哪一個未來。

我們選擇如何使用技術,跟技術本身的特性同等重要,甚至更為關鍵。儘管新技術創造了新的可能性,但我們需要去決定,哪些可能性會真正發生,成為新的現實。

閱讀全文 預測未來:從蒸汽機到人工智能,我們學到了什麼?

Tesler’s law, 複雜性守恆定律

[大衛選讀] 設計師會不會想太複雜了,有必要在系統上做到這樣複雜的判斷跟處理嗎?在產品規劃時,這是很常出現的來回思辨跟角力。

我的經驗是:表面上看起來簡單,其實裡頭通常並不簡單。一開始想簡單了,最後很可能用起來就會複雜到爆炸。

複雜與否,這當中的權衡一直是很有趣的議題。Tesler’s law 複雜性守恆定律,正是這樣的洞見,有助於我們理解整體的複雜性,並且更好地思考該如何應對。

這個定律簡單講,就是根本的複雜性是不可能消滅的。要麼這個複雜性在規劃階段由設計跟開發來承擔,要麼就是丟給使用者來自己面對。

但仔細去思考,就會發現人性偏好在未知懵懂的狀況下,去選擇複雜的解法以求得安心;過度的簡單,可能會造成體驗的反效果;以及如何利用建立概念模型、漸進式揭示等設計技巧,去有效承載消化不必要的複雜性。

本文選讀彙整了多篇文章。內容整理如下,原文連結則放在留言中。


在應用程式或流程中,誰應該承擔起這樣的複雜性?是使用者,還是設計師和開發人員?這是在做介面設計,以及更廣泛地考慮人類如何與技術互動時,必須面對的一個基本問題。

體驗設計師的其中一個關鍵目標是,為人們降低複雜性,讓產品和服務能夠變得更簡單易用。

但是每個流程都有一些固有的複雜性。不可避免地,當複雜性無法進一步降低時,只能將它其從一個地方,轉移到另一個地方。在這個時候,複雜性要麼進入使用者界面中,要麼進入設計師和開發人員的工作流程中。

The origins of Tesler’s law

複雜性守恆定律 (Tesler’s Law, Law of conservation of complexity) 的起源可以追溯到 1980 年代中期,當時全錄 PARC 的計算機科學家 Larry Tesler 正在協助開發全新的互動設計語言。這是一套定義互動系統結構的原則與標準,對桌上型電腦和排版技術的發展至關重要。後來又到了蘋果電腦,協助開發 Mac 物件導向的軟體框架。

Tesler 意識到,介面的一致性不僅會讓使用者受益,也能夠讓開發人員受益,因為共通的標準可以內建在共享的軟體庫中。很快速有效地導入,並且發揮綜效。

Tesler 將複雜性守恆定律,定義為一種向公司管理層以及獨立軟體供應商,推銷這個想法的說服方法,希望能在大眾市場軟體中建立標準,以減少終端客戶面臨的複雜性。

Tesler 認為:「工程師應該多花一週時間,來試圖降低使用端的複雜性,而不是讓數百萬的用戶因為這不必要的複雜性,而每天得多花一分鐘。這樣做是讓工程師輕鬆了,但是反過來懲罰了使用者。」

Complexity bias leads to more complex solutions 人們天生偏好看起來複雜精細的解法,結果往往導致更複雜的解決方案

人類有相當多的認知偏差,它是一種心理捷徑,讓我們能夠快速做出決定而不需徹底分析情況,進而提高了我們的效率。

複雜性偏差 (complexity bias) 則是我們傾向選擇那些複雜和精細的解決方案,而非直接簡單的解決方案。這通常是因為複雜性會讓人聯想到:智慧、專業知識,或是有著深度的理解。

簡單來說,我們經常過分讚許那些聽起來複雜的概念,或者當我們感到困惑或沒有花時間真正理解時,會將原本很容易理解的事物,視為是相對複雜和困難。

當我們選擇更複雜的解決方案時,我們就逃避了真正理解關鍵問題的必要性。但結果往往是,解決方案中的複雜性和假設越多,失敗的可能性就越大。

閱讀全文 Tesler’s law, 複雜性守恆定律

Giver culture, 互相給予幫助的動機與能力

[大衛選讀] 最近在反思,一個設計團隊效能好、氣氛佳的關鍵原因是什麼?是因為團隊成員都很資深、組成很多元、還是16型人格很速配?

想了想,都不是。我看過效能氣氛都好,而且可以逐步成長越來越好的團隊,通常多數成員都會主動伸出手幫別人一把,同時自己也樂於請求幫助。

Adam Grant 在 2013 年提出的 Giver and Taker 概念,正好很呼應了我的實務經驗與反思。團隊效能高低的關鍵,來自於互相給予幫助的動機與能力。

這當中包含了如何篩選適當的人格特質進入團隊、如何透過管理機制去加強促進幫助他人的行為,以及如何創造一個樂於尋求幫助的環境,而不用擔心示弱等。

本文選讀彙整了多篇文章。內容整理如下,原文連結則放在留言中。


在 9/11 恐怖攻擊事件之後,一組哈佛心理學家團隊進入美國情報系統進行研究。他們想要找到,情報單位運作效率高低的真正關鍵因素。

透過針對 64 個不同情報小組中,數百名分析師進行調查、訪談和觀察,研究人員發現,關鍵並不是他們預想的那些。像是擁有清晰、具有挑戰性和有意義的願景,也不是明確定義的角色和責任,適當的獎勵、認可和資源,或是強有力的領導。

相比之下,要預測群體效能高低,最直接有效的因素只有一個,那就是:分析師之間互相給予幫助的數量 (the amount of help that analysts gave to each other)。

在表現最好的團隊中,分析師會投入大量時間和精力來指導、教學和諮詢 (coaching, teaching, and consulting) 他們的同事。這些幫助了分析師去質疑自己的假設,填補知識空白,獲得新的視角,並在看似不相連的訊息線索中認識到模式。

相反地,在評級最低的單位中,分析師之間很少互相幫助。光是掌握互助行為的頻次數量,就可以讓哈佛研究人員準確預測出各單位最終的績效排名。

Give, take, or match 給予、索取或互利

在給予者 (giver) 的文化中,員工的運作方式與高績效的情報單位一樣:樂於幫助他人、分享知識、提供指導和建立聯繫,而不期望得到回報。

同時,在索取者 (taker) 文化中,慣例是盡可能從別人那裡拿多一點東西,同時少貢獻一些。員工只有在個人利益比付出成本更高時才願意提供幫助,而不是在組織利益超過個人成本時。

大多數的組織處於中間的位置。也就是互利者 (matcher) 文化,慣例是員工會去幫助那些幫助他們的人,保持給予和索取的平衡。但這只是封閉小圈圈的互助,針對跨部門或地區的員工,若是彼此沒有足夠的互信,就沒有辦法啟動正向循環。

All too often, leaders create structures for takers 通常是領導者自己建立出了鼓勵索取的管理結構

既然開放的互助系統有明顯的好處,為什麼大多數的組織沒有發展出 giver culture 呢?

那是因為,領導者經常自己創造出,會阻礙這一過程的管理結構。根據康奈爾大學經濟學家羅伯特·弗蘭克 (Robert Frank) 的說法,許多組織本質上是贏家通吃的競技場,重點在於彼此爭奪獎勵和晉升。

當領導者實施強制性的績效排名來獎勵個人表現時,他們就在 giver culture 的發展過程中設下了障礙。這會把員工放在爭奪資源的對立面,讓互相幫助這件事變成了一個不明智的舉動,除非他們自己能因此獲得更多划算的回報。

原本願意付出的那些人,很快地就會發現這太費力了。他們自己的生產力受到影響,因為組織裡的 takers 佔據了他們的時間甚至竊取他們的想法,透過剝削來達到自己的成就。

隨著時間過去,可以預料的是,員工們會發展出更多的索取行為,或至少變成 matcher 來保護自己。每當他們提供幫助之前,都期望至少要能互惠才願意行動。

閱讀全文 Giver culture, 互相給予幫助的動機與能力

永遠不要召喚你無法控制的力量 – Never summon a power you can’t control

[大衛選讀] 關於人工智慧的發展與影響,近期有很多思辨。像是AI Is a False God, Artificial intelligence is losing hype等,都在講現在看到的人工智慧,只是一種假象。看似充滿智慧的背後,只是玩弄了人類熟知的表達形式,並不代表真知卓見與創新巨變。

相較之下,哈拉瑞 (Yuval Noah Harari) 的新書摘要,一篇名為《永遠不要召喚你無法控制的力量》的文章,則更能引起我的深度反思。

哈拉瑞是著名的歷史學者、哲學家暨暢銷作者,著有人類大歷史三部曲。他不從短期技術分析著手,更關注人類歷史長期的發展與演變趨勢。他認為人工智慧並不等同於以往的技術革新,不只是個工具,而是歷史上第一個能夠自己做決定和創造新想法的技術。

以 AlphaGo 的第 37 手棋作為關鍵分界點,人工智慧的特質,包含越來越不依賴人造的外星本質 (the alien nature of AI),以及不可理解性 (the unfathomability of AI),對於人類來說都是前所未有的挑戰甚至威脅。

往後如果有幸,人類沒有發動大規模戰爭,毀滅掉了自己,也勢必要面臨人工智慧壓倒性的挑戰。團結一致是唯一的機會,不然召喚出無法控制的力量之後,就很難抵禦我們孕育出來的超高等智慧了。

文章很長,值得細讀思考。內容整理如下,原文連結:https://www.theguardian.com/technology/article/2024/aug/24/yuval-noah-harari-ai-book-extract-nexus


永遠不要召喚你無法控制的力量 Never summon a power you can’t control

忘記好萊塢電影演的魔鬼終結者機器人吧,人工智慧的現實情況,遠比這些電影更加危險。

縱觀歷史,許多傳統思想都認為人性中存在某種致命的缺陷,誘使我們追求我們不知該如何處理的力量。

例如希臘神話中,法厄同妄圖駕駛太陽神赫利俄斯的太陽戰車,結果失控引發災難。兩千年後,當工業革命邁出第一步,機器開始在許多任務中取代人類時,歌德的警世故事《魔法師的學徒》講述了學徒使用魔法讓掃帚取水,卻無法加以控制而釀成大洪水。這兩個故事都警示人類:不要貿然召喚或使用超出自身掌控能力的力量。

人工智慧對人類構成前所未有的威脅,因為它是歷史上第一個能夠自己做決定和創造新想法的技術 (the first technology in history that can make decisions and create new ideas by itself)

以前所有的發明都是為人類賦能,因為無論新工具有多麼強大,使用它的決定仍然掌握在我們手中。核彈不會自己決定殺死誰,也無法改進自己或自行發明出更強大的炸彈。

相比之下,自主無人機可以自己決定殺死誰,而 AI 可以創造新穎的炸彈設計、前所未有的軍事策略和更好的人工智慧。

人工智慧不只是工具,它是一個智能個體 (AI isn’t a tool – it’s an agent)。人工智慧最大的威脅在於,我們正在召喚無數個新的強大智能個體到地球上,它們可能比我們更聰明、更有想像力,而我們並不完全理解或控制它們。

AI 過往被用來當做人工智慧 (artificial intelligence) 的縮寫,但也許將其視為外星智慧 (alien intelligence) 的縮寫更為恰當

隨著人工智慧的發展,在依賴人類設計的意義層面上,它變得越來越不「人造」,反而更加地「外星」。

許多人試圖用「人類水平智能」的標準來衡量甚至定義人工智慧,我覺得這樣的標準有很深的誤導性。這就像用「鳥類水平般的飛行」標準來定義和評估飛機一樣,這兩者間已經是完全不同的尺度。

人工智慧並不是在朝著人類水平智能前進。它正在發展一種更像是外星類型的智能。

現在的人工智慧已經能夠自己創作藝術和進行科學發現。在未來幾十年內,它很可能獲得創造新生命形式的能力 (AI will gain the ability even to create new life forms)。無論是通過編寫基因代碼還是發明使無機實體生動起來的無機代碼。

因此,人工智慧可能會改變不僅是我們物種的歷史,而且是所有生命形式的進化進程 (not just of our species’ history but of the evolution of all life forms)。

閱讀全文 永遠不要召喚你無法控制的力量 – Never summon a power you can’t control

AI 時代的設計品味 vs. 技術能力

[大衛選讀] AI 時代的設計品味 vs. 技術能力

總不會讓設計師失望的,Nielsen Norman Group 最新的文章,再次為設計師的不可取代性,有條有理地大聲疾呼。

我確實也認同,品味跟鑒別度是創造極致的關鍵。但是有多少普羅大眾分得出來80分跟90分的差別,這個我就沒有把握了。

我更好奇在意的會是,是否有機會結合 AI,讓設計師作對選擇 (make right choice) 的鑒別度提高,更好地理解問題,以及更客觀地去評估解法。

無論如何,內容整理如下,原文連結:https://www.nngroup.com/articles/taste-vs-technical-skills-ai/


Design Taste vs. Technical Skills in the Era of AI

生成式 AI 工具正在賦予人們前所未有的創作能力。你不需要擁有相機就能創作照片,不需要任何視覺設計技能就能製作插圖,也不需要了解任何韻律就能創作詩歌。只需點擊幾下,任何人都可以打破傳統障礙,生成幾乎所有你想要的東西。

這是 AI 工具令人興奮的好處之一,它們彌補了技能的差距 (fill skill gaps),減少了設計中常見的乏味且依賴手頭功夫的任務 (reduce the boring, technically tedious tasks).

然而,僅僅因為某人能夠創造出他們以前無法創造的事物,並不意味著這就是好東西。

技術能力 ≠ 品味 (Technical Capability ≠ Taste)

雖然 AI 可以輸出各種東西,但並不保證品質。技術能力並不等於創造力 (Technical capability does not equal creative ability).

創意策略總監 Oisin Hurst 對此提出了一個完美的比喻:AI 之於創造力,就像微波爐之於烹飪 (AI is to creativity what microwaves are to cooking).

如果你是一個糟糕的廚師,微波爐可以完成工作。但輸出的品質絕對無法與廚師製作的精緻餐點相提並論。微波爐不允許太多創意實驗。你可以改變烹飪時間和強度,但僅此而已。

因此,如果你是一位有天賦的廚師,使用微波爐可能會讓你感到沮喪,因為你對輸出的精確控制較少,而且產品的品質將遜於大多數其他烹飪方法的結果。

隨著 genAI 的廣泛應用,設計師不再是唯一能夠產生設計輸出的人。你不必是視覺設計師就能創建插圖,不必是內容設計師就能創建內容,甚至不必是互動設計師就能創建網站。

我們預計,在未來,設計師將不再能靠著擁有產生設計物所需的技術技能,就因此與眾不同。任何人都能夠製作各種內容類型,無論他們的技能高低。

那麼,為什麼還需要設計師呢?

我們認為,創造一個好的設計所需要的,不僅僅是技術技能。因為設計在技術層次上做得出來,並不意味著它就是正確的設計。

閱讀全文 AI 時代的設計品味 vs. 技術能力

從 McKinsey’s Lilli 生成式 AI 工具,看顧問的獨特價值

[大衛選讀] 自從今年三月 Claude 3 Opus 開放使用後,我最常做的事情就是,把資料丟進去,然後開始跟 AI 對話。

做做單篇內容的翻譯總結跟摘要是很基礎的,比較有趣的用法會是把有上下文關係的多個文檔放進去,然後試著做綜合分析跟比較。例如把研究規劃、訪綱、逐字稿都塞進去,然後開始靈魂拷問:每一個關鍵的研究問題下,發現到什麼脈絡、會如何詮釋跟解讀,跟去年的另一篇報告相比又有什麼不同的發現?

這樣做的目的,並不是要一個結果,而是要在過程中幫助思考各種可能性。

同樣是顧問業,麥肯錫在去年發表了 Lilli 這個生成式 AI 工具。Lilli 是以 1945 年聘用的首位女性專業人員 Lillian Dombrowski 命名,她創立了麥肯錫的第一個檔案資料庫,以敢於接受任何挑戰的精神而聞名。

看著 Lilli 的應用案例,會去深刻想想,再過五年,顧問業還是今天這樣的樣貌嗎?什麼東西是值得留下來的,哪些只會變成時代的眼淚?身為顧問的獨特價值又是什麼?

多篇文章的內容整理如下,原文連結則放在留言中。


Lilli has unleashed the creative potential in McKinsey’s Consultant

把過往幾十年到剛剛出爐的顧問報告,轉變成馬上可以取用的諮詢資源

眾所週知,麥肯錫有個 「KNOW」資料庫,裡頭涵蓋了多年來累積的案例研究、產業剖析、方法論指南等逾十萬份文件與訪談記錄。這些知識結晶在結案之後,會經過去識別化等保密處理,然後放到內部資料庫中,變成全球上萬名麥肯錫顧問可取用的參考資源。

而 Lilli 之所以強大,關鍵在於它能夠直接存取麥肯錫內部龐大的知識庫「KNOW」。只需輸入問題或關鍵字,Lilli 便能快速搜尋資料庫並給出綜合答覆。相較於過往必須透過搜尋、閱讀跟比對大量文件資料;以對談方式萃取過往知識脈絡,大幅節省了顧問蒐集資料的時間。

多層次知識源整合 (Multi-level Knowledge Integration) 

Lilli 能夠將 KNOW 資料庫中不同層次、不同維度的知識進行有機融合,形成全面、系統性的洞見。

在專案層面 (Project Level) 上,包括項目的背景、目標、團隊組成、工作計劃等。Lilli 可以從中根據新專案的特性,提煉出專案管理上的最佳實踐,如里程碑設置、資源配置等,作為新項目的規劃參考。

在方法論層面 (Methodology Level) 上,麥肯錫過往積累了大量的通用方法論和分析框架,如五力模型、價值鏈分析、波士頓矩陣等。Lilli 可以將這些方法論與具體的專案脈絡相結合,預先示範如何利用方法論與工具去解決特定的問題。藉此幫助顧問思考,並且提升分析的深度和廣度。

行業洞見層面 (Industry Insight Level) 上,KNOW資料庫涉及各個行業的研究報告、趨勢分析、標桿案例等。這些內容反映了對特定行業的宏觀掌握。Lilli 可以將這些行業洞見與專案層面的經驗相結合,將單一專案放在行業大背景下審視,去有效識別出更多的機會與風險。

專家網絡層面 (Expert Network Level) 上,KNOW資料庫中還包含了麥肯錫全球專家網絡的資訊。Lilli 可以結合專家觀點,並且串連起全球各地麥肯錫顧問間的交流聯繫。

閱讀全文 從 McKinsey’s Lilli 生成式 AI 工具,看顧問的獨特價值

Vitalik Buterin 眼中的技術樂觀主義

[大衛選讀] 週末靜下心來讀了 Vitalik Buterin (以太坊共同創辦人) 的長文 My techno-optimism.

人類自有歷史以來,科技的進步為我們的生活帶來了巨大的改變。從石器時代的簡陋工具,到今天可以瞬間跨越地球的通訊技術,以及將人類壽命延長一倍的醫療科技。技術發展無疑為人類帶來了深遠的利益。

然而隨著人工智慧等破壞性創新技術的興起,我們也必須審慎面對潛在的風險。人工智慧是一把雙刃劍,它所代表的力量遠非人類以往面對過的任何科技。

單純地遵循利潤最大化的邏輯,並不能自動實現我們理想的未來,而是需要人類做出積極的價值選擇 (need active human intention to choose the directions that we want)。

展望智慧未來,技術的發展需要積極選擇與引導。

很長的文章,但是很有啟發性。內容整理如下,原文連結:https://vitalik.eth.limo/general/2023/11/27/techno_optimism.html


Technology is amazing, and there are very high costs to delaying it

技術進步為人類帶來巨大利益,企圖延緩技術發展的代價將會非常大。

以醫療技術為例,在過去一個世紀,技術進步為人類健康與壽命帶來顯著提升。儘管在這段期間內也發生了世界大戰等浩劫,但整體而言,食品、衛生、醫療、基礎設施等領域的改善,帶來的效益遠遠勝過戰爭的破壞。

如果生物技術在未來75年裡的進步,能夠跟計算機在過去75年中的進步一樣多,那麼未來可能比任何人預想的更令人刮目相看。人類或許在未來幾十年內,就能徹底戰勝衰老與疾病。

考慮到各個領域的技術進步是環環相扣的,即使是部分的推遲,也可能帶來難以預料的風險。因為擔心害怕,而刻意抵制技術發展,就過去的歷史來看,並不是一個好的選擇。

閱讀全文 Vitalik Buterin 眼中的技術樂觀主義